Memory Bus Security

Lifeng SU
STMicroelectronics, Rousset
Email: Lifeng.Su@st.com

Renaud PACALET
Télécom Paris, Sophia Antipolis
Email: Renaud.Pacalet@enst.fr
Agenda

• Introduction
• Confidentiality
• Integrity
• SecBus
 – hardware
 – software level issues
• Wrap-up
• Reference
Traditional computing platform

- One hypothesis: on-chip bus is secure
 - side-channel attacks
 - fault injection attacks
 - software attacks (OS)

- Our attention is paid to on-board bus
Data/instruction confidentiality

- Countermeasure: encryption primitive
Program flow confidentiality

- Countermeasure: memory permutation (HIDE project)
Integrity

- **Threat 1: spoofing attack**
 - countermeasure: MAC (message authentication code)

- **Threat 2: splicing attack**
 - countermeasure: MAC + address

- **Threat 3: replay attack**
 - countermeasure: hash tree
Hash tree

• Every time one data is read, integrity checking should be processed until the tree root

• Every time one data is written, hash tree should be updated until the tree root
Our project: SecBus

- Introduction
- Confidentiality
- Integrity
- SecBus (hardware)
- SecBus (software level issues)
- Reference
- Wrap-up

• Platform
 Altera Stratix
 S40
 40K logic cells
 @50 MHz

• CPU (Sparc)
 Gaisler Leon:
 http://www.gaisler.com/

• objective: protect the execution of essential applications in linux
OS in SecBus

- the basic protection unit: *process*

- some impacts on Linux kernel:
 - stack (heap)
 - dynamic linking/loading (shared library)
 - signal handling
 - system call (pointer passing)
 - swapping
 - shared memory zones
 - I/O (DMA)
 - IPC
 - others?

![Diagram showing Linux system, Leon processor, SecBus, and processes with keys]
Application loading

1. **encipher offline ELF but header**
 - symmetric cryptography (Ke)

2. **Modify offline ELF header**
 - indicate whether this application is secure or not

3. **Encipher offline ELF header with CPU public key (Kp)**
 - Every CPU has one asymmetric key pair (Kp, Ks)

4. **Load ELF**
 - CPU deciphers ELF header with its private-key (Ks)
 - ELF loader gets the private key (Ke) from ELF header
 - SecBus loads it into memory
Related projects

<table>
<thead>
<tr>
<th></th>
<th>Data/instruction confidentiality</th>
<th>Program flow confidentiality</th>
<th>Integrity (splicing attack & spoofing attack)</th>
<th>Integrity (replay attack)</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>XOM (Stanford)</td>
<td>y</td>
<td>n</td>
<td>y</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>AEGIS (MIT)</td>
<td>y</td>
<td>n</td>
<td>y</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>HIDE (GIT)</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>CryptoPage/HIDE (ENST Bretagne)</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>PE-ICE (ST)</td>
<td>y</td>
<td>n</td>
<td>y</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>SecBus</td>
<td>y</td>
<td>n</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
</tbody>
</table>
Prospects

• Integration of hardware and OS

• Further improvement of the performance

• Multiprocessor
Reference

- XOM - *Architectural Support for Copy and Tamper-Resistant Software*,
 D. Lie, PhD thesis, Stanford University

- AEGIS - *AEGIS: A Single-chip Secure Processor*,
 G.E. Suh, PhD thesis, MIT

- HIDE - *HIDE: An Infrastructure for Efficiently Protecting Information Leakages on The Address Bus*,
 X. Zhuang, GIT

- CryptoPage/HIDE - *CRYPTOPAGE/HIDE : une architecture efficace combinant chiffrement, intégrité mémoire et protection contre les fuites d’informations*,
 Ronan Keryell, Guillaume Duc, ENST Bretagne

- PE-ICE - *A Parallelized Way to Provide Data Encryption and Integrity Checking on a Processor-Memory Bus*,
 Reouven Elbaz, STMicroelectronics