Evolution of Navigation Platform in Smartphones

Dr Lionel J. GARIN
Senior Director of Technology
Qualcomm QCA, Santa Clara-USA
Qualcomm is the leader in Location Technologies

60% GNSS market share*
3B+ devices with IZat technology
>100 mobile OEMs
>80 carrier deployments

“While others are playing catch-up, Qualcomm continues to innovate, with all new Snapdragon processors supporting its new IZat location platform.”

Patrick Connolly, ABI Research

* Source: ABI Research, Sept 2013
Delivery of Seamless and Ubiquitous Location “Anywhere”

Most Precise Indoor (<5m)

Partnering to build the ecosystem for indoor location-based services

Over 1Billion Devices Shipped

Integrated & Standalone Chipsets

Indoor Location Solutions

Satellite-Based GNSS Solutions

Augmentation Technologies (Cellular, Wi-Fi, Sensors, Servers)

Industry's Broadest Portfolio

Always Available, Always-On

Proprietary-Qualcomm Technologies Incorporated.-All rights Reserved
Requirements for the “Best Indoor Location Experience”

Delivering a great location service is challenging

Ubiquitous
Works everywhere – indoors and out

Accurate
Best positioning performance

Intuitive
Works without user intervention

Private
Overcomes concerns about consumer privacy & security

Optimized Power
Long lasting battery

Universal
Meets global industry standards and operator requirements

Scalable
Supported by major devices, OSes, and applications
Why indoor LBS have been slow to reach mass market

- Lack of **universal, cross-platform** solution
- Use cases and **monetization models** are still being defined
- **No standards** exist for storing, managing and viewing indoor data
- Venues perpetually searching for a **silver bullet** that serves all customers and all use cases
- **Confusion** caused by small(er) companies pitching one-off platforms and technologies to venues
- Lack of solutions that tie to **backend systems** at venues
- **Privacy and data ownership** issues are still a major concern for venues, operators, developers, etc.
Applications

Device Orientation
E-compass

Navigation
Retail Analytics

Ambient Intelligence
Personal Analytics
Fitness
Elderly Monitoring

Store hours?

How do I get there?

How long do people linger here?

Have my friends arrived?

What’s on sale?
Indoor Location Technologies

- Wi-Fi
- Bluetooth
- BLE
- iBeacon
- Hybrid
- Active
- Magnetic-field
- NFC
- LED
- UWB
- RFID
- Passive
- Handset-based
- Infrastructure-based
- Audio
Technical Evolutions

Technologies

- Outdoors
 - More GNSS constellations
- Indoors
 - WiFi (2.4 and 5GHz)
 - iBeacon support
 - Pedestrian Dead Reckoning
 - Mag field
 - VLC
- Emerging
 - Collaborative Positioning
 - LTE direct (or LTE ProSe)
 - DSRC based Vehicle-Pedestrian Collision Avoidance
 - Visual Perception
 - Probabilistic Positioning Algorithms

Challenges Across Technologies

- Map procurement
 - Emergence of Unreferenced Crowdsourcing for RF radiomap
- Power Consumption, Always ON
- Sensor Fusion
Comparison of Indoor Location Technologies

Location Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Indoor Accuracy</th>
<th>Ambient Intelligence</th>
</tr>
</thead>
<tbody>
<tr>
<td>• GNSS (concurrent) • BLE/iBeacon • Wi-Fi (RTT)</td>
<td>• Sub 5m • limited coverage</td>
<td>• First indoor maps • Google launches project Tango</td>
</tr>
<tr>
<td>• Sensor Fusion • Always-on location • Magnetic-Field • LTE</td>
<td>• Sub-3m • Filling in the gaps</td>
<td>New proprietary ambient intelligence services emerge • Augmented Reality re-emerges • Mobile Payments</td>
</tr>
<tr>
<td>• BLE 2.0 • Wi-Fi 2.0 • Smallcells</td>
<td>• Sub Meter • Next generation of technology</td>
<td>• Significant ramp in indoor maps and services • Wearables more predominant. • Location networking</td>
</tr>
<tr>
<td>• LED • Audio • LTE-Direct • Indoor GPS • Data-fusion</td>
<td>• Sub-meter everywhere</td>
<td>• IoE begins to take effect • AmI APIs as standard • Proximity based information exchange</td>
</tr>
</tbody>
</table>

Source: ABI

2014 2015 2016 2017
Handset-Based Vs Infrastructure-Based

Handset-Based

- Pro
 - Low-cost
 - Hybrid technology
 - Large number of providers
- Con
 - iOS Wi-Fi APIs blocked
 - Regular Updates

Handset-Based

- Pro
 - Leverage existing infra and relationship
 - Control rests with retailer
 - Large number of providers
- Con
 - Privacy
 - High Cost

Source: ABI
Wi-Fi – Pros and Cons

- **Strengths**
 - Large retail penetration
 - High level of competition
 - High smartphone penetration
 - Has potential to support advertising, push notification, where no cellular coverage.

- **Weaknesses**
 - Apple Wi-Fi APIs remained closed.
 - Google potentially owns handset-based market
 - Accuracy/cost specs and reality vary
 - Not standardised. May be difficult to work across different implementations and infrastructure

- **Threats**
 - AP providers slow to support low-cost solutions
 - BLE has stolen the headlines

- **Verdict**
 - Still a fundamental anchor technology
 - Wi-Fi evolutions coming
Bluetooth – Pros and Cons

Strengths
- High handset penetration
- Fully passive implementation for analytics
- Standardization - scalability and price
- High accuracy
- Huge potential for vertical-specific application

Weaknesses
- Full infrastructure installation required.
- Only proximity, not location-based (No in-store navigation)
- Device must be “Active” - limits penetration to 25-30%.
- Unsuitable for advertising today
- Short-term kinks in iBeacon standard

BLE/iBeacons:
- Qualcomm Retail
- ilinside (previously WirelessWERX)
- BestFit
- Estimote
- Zebra Technology (Zatar IoE platform)
- Data Display Inc. (integrated into digital pricing labels)
- shopkick (American Apparel rollout)
- GPSHopper
- StickNFind
Visible Light Communications Technology

VLC enables a number of indoor positioning Use cases

- **Product Level Navigation**
 - Retailers forego 20% of revenue from shoppers not finding products
 - Higher-efficacy nav for search, shopping lists, promotions

- **Product Level Location Triggered Promotions**
 - 70% of sales are made at aisle
 - 84% of smartphone users use devices to help shop in store
 - CPG companies consider product level advertising 2.5x more valuable than store level

- **Product Level Analytics**
 - More accurate location & navigation heat maps
 - Orientation data opens new dimension of analytics

a 20% of total US retail market = $4.7b; 20% of Luminiscat target market = $1.7b
b Source: Aisle411
c Source: POPAI Consumer Buying Habits Study
VLC – Pros and Cons

Pros
- Zero Cost for Infrastructure (LED revolution underway)
- Ubiquitous sub-meter accuracy
- Tight integration with iBeacons, Sensors Fusion, etc.
- Huge potential for vertical-specific application

Cons
- Accurate location of LED lights
- Modulation techniques
- Provisioning and Deployment
- Smartphone camera orientation
Beacon Location or RF fingerprinting

Knowledge of and access to accurate beacon information is critical

- **A-priori knowledge**
 - From Venue Owners
 - Very diffused or information not available
 - Not always accurate
 - Operator mistakes

- **War driving/War walking**
 - Tendency to have all APs aligned on the road
 - Too inaccurate
 - Limited hearability for indoor beacons

- **Systematic survey**
 - High cost
 - Ground reference
 - Turn-around time

- **Crowd-Sourcing**
 - Coverage as large as the user wanderings
 - Very fast update and very fast growth
 - Legal Aspects
 - Ground reference
 - Access to mobile measurement engine
 - Needs centralization point
RF Radiomap Collection

- Collected data
 - RF signature only or RF+Sensor
- Bootstrap
 - From another location technology
 - Building Topography
- A priori information
 - None
 - Topographic map and walkable area
- Georeferencing
- Accuracy
- Initial Collection or Maintenance

Similar situation for other fingerprinting methods (e.g. magnetic field)
Device to Device Location (D2D)

Stand-alone and Self-organizing
- WLAN D2D
 - (E.g. WiFi Direct, Bluetooth, NFC)

Network Assisted or Network Controlled
- WAN + WLAN D2D
 - (E.g. LTE + WiFi Direct)

Network Integrated and Heterogeneous Network
- WAN D2D
 - (E.g. 3GPP LTE D2D)

Source: Intel
Sensor Fusion

Always ON Intelligent Hub

Sensor fusion is becoming a key differentiator:

- E-compass: Accelerometer+Magnetometer
- Tilt Application: Accel+Gyro+Magneto
- PDR: Compass+Gyro+Accel
 - Double integral vs. biometrics bounding errors
- Geofencing
 - GNSS+WiFi+Accel
- Hybrid Location
 - WiFi+Mag field+PDR (+Cellular)

Brings Benefits and Limitations

- Fills gaps
- Crowd-sourced RF mapping
- 18 to 25 MIPS dedicated processing hub

More the play of large companies such as Broadcom and Qualcomm
Startup companies have algorithms, but no access to API
Thank you